
DPMine/P: modeling and process
mining language

and ProM plug-ins

Sergey Shershakov

Moscow 2013

International Laboratory of
Process-Aware Information Systems
(PAIS Lab)

Outline
• Existing Tool: ProM
• Formulation of the Problem
• Approaches to Problem Solving
• Main Concepts
• ProM Representation of Models
• XML-based Language for Model Representation
• Extended Functional Concept
• Some of Block Types and Use Cases
• Work and Progress

2

PROM
Existing Tools

3

ProM

4

Use case: large-scale experiments

5

Formulation of the Problem
• To develop a descriptive mark-up language for

workflow on Process Mining; it should possess
the following properties:
 gathering stages of an experiment into a single

sequence;
 supporting control workflow for implementation

of cycles and other required control elements;
 …

• Implement the language on the basis of ProM
tool

6

Basic prerequisites
• The language under development is considered from

two levels — upper and lower
• Upper/intermediate level:
 XML-based language itself (storage level);
 graphics editor enabling the creation of workflow models

in the from of graphic block elements and their
compilation into an XML representation (user level);

• Lower level:
 object model

7

Language representation (viewpoint) levels

• Object model, a representation of the workflow of a task
being solved in computer memory, is based on the concept of
blocks and connectors

• XML model is a basis for an object model and is used for its
storage in a persistent experiment file

• Tools for derivation of an XML model, e.g. graphics editor

8

Preparation of an Object Model

9

CONCEPT OF BLOCKS, PORTS,
CONNECTORS AND SCHEMES

Object model

10

Main idea
• Implementation of basic language semantics is done

through the concept of blocks, ports and connectors
• Expansion of the language’s functionality should be

based on this very concept

11

Blocks, ports and connectors
• Block — basic language building element; considered as a

solitary operation in an external representation but can be
complex in an internal one

• Port — linking object that belongs to a certain port and has
the properties of direction and data type

• Connector — directed linking object connecting two blocks
through their ports

• Scheme — multitude of interacting blocks connected with
each other by connectors

12

Blocks
• Basic building element for schemes

(and for models respectively)
• Perform a specific task
• Act like a statement in programming languages
• Blocks can have different functionality:
 perform a single task of a base platform (task blocks);
 represent complex schemes into single blocks (scheme blocks);
 implement control workflow (control flow blocks);

13

Block types hierarchy

14

Ports
• Port — object belonging to a certain block and used

for connection and data objects transfer to other
ports

• Depending on direction, there are ports:
 input
 output
 proxy (input-output and output-input)

• Transfer objects of a specific data type
• Depending on block type, can be either custom or

built-in

15

Connectors
• Connector — object connecting two blocks through their ports
• It has a link direction: a connector (with its beginning) always

connects an output port of a block with an input port of
another one (with its end)

• One output port can be linked to several connectors, whereas
one input port can have only one connector linked

16

Scheme
• A number of interacting blocks connected with each other by

connectors
• It is the main mechanism of implementing abstraction, isolation and

hierarchy of sub-processes
• On the figure there is depicted a connected scheme consisting of

four blocks (A, B, C, D) and four connectors (AB, AC, AD, BD)

17

Scheme interface
• Let us call scheme interface an arbitrary ports subset Ifp (called interface

ports) within all the blocks’ ports of the scheme
• On the figure below a scheme interface is as follows:

Ifp = {A.in, B.out, C.out} (whereby port in of block A is
denoted A.in); the interface ports are in red

19

MODEL AND ITS EXECUTION
Implementation in ProM

20

DPModel
• DPMine DPModel(/P) — workflow model

represented by a data object (Java object) in ProM
tool

• Contains an upper level scheme to be executed by
Executor (ProM plugin)

21

DPModel

Model execution
• Model execution consists in executing the main scheme of the

model (upper level scheme) and producing an execution
report (about errors, etc.)

• Model execution is done by a special agent — Executor,
implementation of which is closely related to the base tool
 In ProM tool, DPMineExecutor ProM plugin is the model Executor

22

Block “execution” concept
• Block execution is a sequence of operations done by an

appropriate tool (e.g., DPMineExecutor plugin), that is
Executor, with regard to a given block in conformity with its
type and set of input parameters (at input ports of the block)

23

Block dependencies
• In order for the Executor to be able to execute a given block it is necessary

that all the external dependencies of the block be satisfied
• For a given block B its dependencies are considered satisfied if:
1. the block does not have input ports;
2. the block has input ports and for each port the following conditions are

met:
a) there is no “must be connected” flag for the port set, this way the port can

be not connected by a connector to another (output) port of another block;
b) the port is connected by a connector to another (output) port of another

block and the status of this block is “executed”, which means there are data
on its output ports that correspond to the types of these output ports

24

Some definitions regarding block execution

• Executable block — block for which the external dependencies are
satisfied

• Running block — executable block which is currently executed by the
Executor

• Observable block — block for which the Executor determines whether its
input dependencies are satisfied

• Unexecuted block — block which has not yet been executed by the
Executor; executed block — correspondingly, an executed block

• Execution attempt — selecting next block by the Executor, determining if it
is executable (at that the block becomes observable) and in the positive
case executing it (the block becomes running) — this is “Block execution
hit” case; alternatively, the block is skipped and another block is passed on
— “Block execution fail” case

25

Block execution
• If a block is executable (that is the input dependencies are satisfied), then

the Executor calls a corresponding block execution procedure which is
determined by the block type (and the block itself becomes running)

26

Execution sequence
• Execution sequence is a sequence determined by the order blocks are

executed by the Executor under the condition they can be executed. The
Executor can undertake several attempts to execute a given block, and in
this case all these attempts, except for the last one, are considered failed
in case for this block not all its input dependencies are satisfied during the
attempts

• In other words,an execution sequence is a sequence of block execution hits
made by the Executor

27

Execution sequence: examples
• For the given scheme the following executions (but not only they) are

acceptable:
 A B C D
 A B D C
 A C B D

• A sequence of blocks executed by the Executor is determined by the
internal representation of the object model

28

Scheme execution
• The notion of execution is introduced for schemes by analogy

with the block
• Scheme execution is a sequence of execution of scheme blocks
• If all the blocks contained in a scheme can change their state

from “unexecuted” to “executed” in a finite number of steps,
the scheme is considered executable
 in other words, if all the blocks within a scheme can be executed, this

scheme is executable

29

XML DESCRIPTION
Language elements

30

XML as language of model description
• XML is a means of stucturized description of a model and

elements it comprises: schemes, blocks, connectors, etc.
• XML document of a model can be composed both manually

and as output of a special editor, for instance that of a
graphics one (work to be done)

• XML representation is also used for storing models in stand-
alone files

31

XML model: example

32

Model
description

Including libraries
related to tasks
dealing with
specific ProM
plug-insMain

executable
scheme

Model’s additional
parameters: report,
etc.

XML description of specific blocks will be given while considering them

Model import

33

Model import

34

Extended Functional Concept

1. Creating a new block class (ConstBlock)
2. Creating a block XML-description loader

(ConstLoader)
3. Registering ConstLoader in

LoadersFactory

35

AbstractBlock

ConstBlock

+parse() : AbstractBlock

ConstLoader

+parse() : AbstractBlock

«interface»
BlockLoader

BLOCK TYPES AND USE CASES
Language elements

36

Task blocks
• Perform specific tasks related to the base tool, for instance

ProM or CPNTool
• ProM Task block:

 is bound with a specific ProM plug-in using annotation which contains
plug-in’s name, method signature (or number) and so on;

 contains ports according to plug-in’s invariant annotation;
 execution of such a block leads to invocation of a ProM plug-in bound

with it

37

ProM task: example 1
• XML description of a task calling AlphaMiner ProM plug-in:

38

Block type Binding with ProM plug-in by
FQI (fully qualified identifier)

Binding with a specific plug-in
method (one of them)

Description of the input
and output ports of the
block with binding them
with the input and output
parameters

Tasks library
• Describing a task block fully each time it is used in the scheme is not convenient
• A mechanism of tasks library is introduced: description of tasks blocks bound with

specific ProM plug-ins is done in a library XML file, whereas the scheme contains
only links to specific library elements:

39

lib

scheme

Library loader plug-in

40

file.dmlib

ProM plug-in

DPMine
XMLImportLib

file.dplib

Library source
(XML-lib)

“Compiled” lib
(also a file)

DPMineReport Report

Scheme blocks
• Scheme block — block representing a nested system of blocks and

connectors
• Necessary for hierarchical structurization of a model
• It is an analogue of the term “procedure” in programming languages
• At the external level a scheme block is a usual executable block that has

external ports of given data types
• Execution of a scheme block at the external level is done according to the

following principle common for all blocks: the only condition is the
satisfaction of the input dependencies
 after having executed a scheme block objects of corresponding types are put

to its output port

41

Scheme blocks
• At the internal level a scheme block, as it comes from its
name, is a scheme consisting of blocks and connectors that
connect them:

43

Scheme blocks: some definitions
• The blocks within a scheme are called internal blocks

 the ports of such blocks are in white on the figure
• The connectors by which the internal blocks are connected strictly with

each other are similarly called internal connectors
 they are depicted on the figure by solid dark blue arrows

44

Scheme blocks: some definitions
• Connection of external ports of a scheme block (dark blue on the figure) with ports

of internal blocks (internal ports) is also done by connectors, which, however, have
a special function and name: interface connectors (or proxy connectors)
 proxy connectors are depicted on the figure by red dashed lines

• The internal ports connected by proxy connectors with external ports are the scheme
interface

45

Scheme blocks: execution semantics
• By scheme block execution one means a consecutive execution of the scheme’s

internal blocks for which the input dependencies are satisfied
• On the figure, for Scheme 1 the following sequences of execution of the internal

blocks (but not only they) are acceptable:
 A B D C E
 A B C D E
 C A B D E

46

Scheme blocks: XML representation

47

Scheme block

Scheme body
start

Some blocks: kind
of pseudo-blocks
for this specific
example

Connectors
for inner
blocks

Scheme external
(interface) ports

and the section to
which they belongSpecial section

for proxy
connectors

Proxy
connectors:
“name”
attribute is
optional

Notation “Block_name-dot-Port_name”
for internal port referencing

Special notation “dot-
Port_name” for
interface ports

Simple “for” block
• It is used (in the simplest implementation) for integrating integral values

from, to, with a specified step
• “For” block is a special scheme that is run repeatedly (iteratively) and

according to the principle of the prior reset of the scheme’s elements
before the next iteration

• It has a scheme body and “i” built-in port (depicted on the scheme by a
dashed triangle) that has no external connection but is an input port with
regard to the external interface of the block
 port name is set through “iname” parameter, by default it has “i” value

• It enables (as in every scheme) to determine external (custom) interface
ports and connect them in a required order with blocks of the scheme
body

48

Simple “for” block
• Example of internal representation of a “for” block in a
body with several blocks:

49

Simple “for” block: semantics
• “For” block runs the content of the scheme body a

number of times depending on from-to-step conditions
• Each iteration means application of the execute()

method for the blocks within the scheme body
• Already after the first iteration all the blocks of the

scheme (and therefore the scheme as a whole) get to
the “executed” state, which precludes the repetitive
execution of the blocks (and the scheme) at next
iterations
 In order to avoid this while executing the next iteration of

the “for” block the reset() method is applied for the whole
scheme (and therefore all the block within) before each
new iteration (including the very first one)

50

Simple “for” block: “i” built-in port
• Loop counter i is taken as a value that is through-

connected to a pseudo-port "i" and can be used
as an input value for any block (e.g., as a
parameter or a mining algorithm)

• Resource type for this port is by default "int“ but
choosing other types is possible, for instance
"double“

• The incrementation semantics of iteration value i
is similar to “for” cycle in Basic language (that is
comparison with the upper limit is made
according to “less-or-equal” condition, <=)

51

Simple “for” block: XML representation

52

Loop parameters Built-in port –
iterator name

AlphaMiner
task

Interface ports

Proxy
connectors.
Port “i” is a
built-in one

Acc block
• It is used for accumulating incoming values in an array
• The block has two built-in ports , one input "in" and one output "out", that

have the types t and t[] (array) respectively, where t is to be set
• At each execution of the block (execute() method) it takes one value from

in input port and appends it to an internal array, after that the block is
marked as “executed”
 at successive applications of reset() for the block the accumulated data from

the internal array are not deleted, which enables the accumulation of the
appended values

• XML representation:
 <acc name="acc1" rtype="org.pro...PetriNet"

iname="in" oname="out"/>

53

Use case 2
• Modified example from this slide:
 Petri nets which are obtained after each iteration of a “for”

cycle are stored by using an acc block

54

Use case 2

55

Expression Block

56

BLOCK EDITOR

58

Yet Another Graphical Tool

59

WORK AND PROGRESS

64

What has been done
• A concept of DPMine language has been

developed
• The language has been implemented for ProM

tool
• A number of basic blocks has been developed

and implemented
• Work on the graphical model editor has been

started

65

What to do next
• Comprehensive design of the graphical model

editor
• Extending functionality by adding new blocks

(as soon as need may be)
• Conducting a wide range of DPMine-based

experiments
• Profiling the reporting subsystem

66

Contacts
 http://www.hse.ru/staff/sshershakov
 sshershakov@hse.ru

 http://pais.hse.ru/research/projects/dpmine

67

THANK YOU!
Any questions?

