
Valentin Anoprenko
VP of R&D

anoprenko@devexperts.com

Gauge for Programmer

Elaboration of software developers evaluation
system – theory and practice

What are we going to talk about

Evaluation of relative efficiency/value of a

developer from employer’s (company) standpoint

in longterm

What we are not going to talk about

 Evaluation of developer’s effort in short term

(BSC/KPI, bonuses, etc)

 IT labor-market and its influence on developers

evaluation, salaries, etc

Why to gauge?

 Fair compensation package

 Directions of professional growth

 Career promotion

Required gauge properties

 Objective

 Comprehensive

 Robust

 Comparable

Network protocols

Network protocols

Continuous
integration
Continuous
integration

Implied obstacles

Too many factors!

AlgorithmsAlgorithms
Data

structures

Data
structures

JavaJava
C++C++

Reading CodeReading Code

OOA/OODOOA/OOD
Design templatesDesign templates

UnixUnix HTML/CSSHTML/CSS

Coding styleCoding style

J2EEJ2EE
NoSQLNoSQL

SpringSpring

SwingSwing

Unit testingUnit testing

Multithreading
Multithreading

Win APIWin API

ArchitectureArchitecture

MavenMaven

TDDTDD

UML
UML

iOSiOS

SQLSQL

Code profiling
Code profiling

AndroidAndroid
SCRUM
SCRUM

Implied obstacles

There are “immeasurable factors”!

 Creativity

 Soft skills

 Common sense

 Ability to solve complex problems

 Responsibility

Implied obstacles

No common scale

 Different evaluation criteria

 Different criteria “weight”

 Different project/team needs

Implied obstacles

Subjective assessment

 Common impression instead of facts

 «Administrative rent»

 Influence of others’ opinion

Possible approaches

Measuring the results via number of

lines of code written

functional points added

story points burned

new features implemented

defects added

etc

Possible approaches

Programmer competency matrix

Programmer competency matrix
 2n (Level 0) n2 (Level 1) n (Level 2) log(n) (Level 3)
Computer Science
data structures Doesn’t know the

difference between Array
and LinkedList

Able to explain and use Arrays,
LinkedLists, Dictionaries etc in
practical programming tasks

Knows space and time tradeoffs of the basic
data structures, Arrays vs LinkedLists, Able to
explain how hashtables can be implemented
and can handle collisions, Priority queues and
ways to implement them etc.

Knowledge of advanced data structures like B-trees,
binomial and fibonacci heaps, AVL/Red Black trees,
Splay Trees, Skip Lists, tries etc.

algorithms Unable to find the
average of numbers in an
array (It’s hard to believe
but I’ve interviewed such
candidates)

Basic sorting, searching and data
structure traversal and retrieval
algorithms

Tree, Graph, simple greedy and divide and
conquer algorithms, is able to understand the
relevance of the levels of this matrix.

Able to recognize and code dynamic programming
solutions, good knowledge of graph algorithms, good
knowledge of numerical computation algorithms,
able to identify NP problems etc.

systems
programming

Doesn’t know what a
compiler, linker or
interpreter is

Basic understanding of compilers,
linker and interpreters. Understands
what assembly code is and how
things work at the hardware level.
Some knowledge of virtual memory
and paging.

Understands kernel mode vs. user mode,
multi-threading, synchronization primitives
and how they’re implemented, able to read
assembly code. Understands how networks
work, understanding of network protocols and
socket level programming.

Understands the entire programming stack, hardware
(CPU + Memory + Cache + Interrupts + microcode),
binary code, assembly, static and dynamic linking,
compilation, interpretation, JIT compilation, garbage
collection, heap, stack, memory addressing…

Software Engineering
source code
version control

Folder backups by date VSS and beginning CVS/SVN user Proficient in using CVS and SVN features.
Knows how to branch and merge, use patches
setup repository properties etc.

Knowledge of distributed VCS systems. Has tried out
Bzr/Mercurial/Darcs/Git

build automation Only knows how to build
from IDE

Knows how to build the system from
the command line

Can setup a script to build the basic system Can setup a script to build the system and also
documentation, installers, generate release notes and
tag the code in source control

automated testing Thinks that all testing is
the job of the tester

Has written automated unit tests
and comes up with good unit test
cases for the code that is being
written

Has written code in TDD manner Understands and is able to setup automated
functional, load/performance and UI tests

Programming
problem
decomposition

Only straight line code
with copy paste for reuse

Able to break up problem into
multiple functions

Able to come up with reusable
functions/objects that solve the overall
problem

Use of appropriate data structures and algorithms
and comes up with generic/object-oriented code that
encapsulate aspects of the problem that are subject
to change.

Possible approaches

«360⁰ feedback»

peers

supervisor(s)

subordinates

self-evaluation

Possible approaches

Job evaluation methods (point factor analysis)

Hay Guide Charts

Mercer’s International Position Evaluation System

Hay method

 Job performance evaluation methodology

 Allows evaluation of creative jobs

 Introduced in 1950s by Edward N. Hay

 Owned and distributed by “Hay Group” consulting company

 Used by 8000+ organizations across the world

Hay method

Based on 3 major evaluation factors

Know-How
(knowledge and skills)

Problem Solving

Accountability

Hay method

Know-How

Problem Solving

Accountability

Job-Specific Knowledge

Managerial Breadth

Human Relations Skills

Hay method

Know-How

Problem Solving

Accountability

Thinking Environment

Thinking Challenge

Hay method

Know-How

Problem Solving

Accountability

Freedom to Act

Magnitude

Job Impact

Hay method

Направляющие
таблицы

Направляющие
таблицы

Направляющие
таблицы

Направляющие
таблицыHay Guide ChartsHay Guide Charts

Job-Specific Knowledge

Scale Rating

Managerial Breadth

Scale Rating

Human Relations Skills

Scale Rating

Know-How rating

Hay method

Направляющие
таблицы

Направляющие
таблицы

Направляющие
таблицы

Направляющие
таблицыHay Guide ChartsHay Guide Charts

Thinking Environment

Scale Rating

Thinking Challenge

Scale Rating

Problem Solving rating

Hay method

Направляющие
таблицы

Направляющие
таблицы

Направляющие
таблицы

Направляющие
таблицыHay Guide ChartsHay Guide Charts

Freedom to Act

Scale Rating

Magnitude

Scale Rating

Job Impact

Scale Rating
Accountability rating

Hay method

Know-How rating

Problem Solving rating

Accountability rating

Направляющие
таблицы

Направляющие
таблицы

Направляющие
таблицы

Направляющие
таблицыHay Guide ChartsHay Guide Charts

Total Points

Hay method

Noticeable difference between scale levels is 15%

Column2

Level 2

Level 3

Level 4

Level 5

50 70 90 110 130 150 170

Hay method
Problem Solving is a percentage of Know-How: “you think
with what you know”

Know-How

Problem Solving

Effect ~ Know-How * Problem Solving

Hay method

Accountability and Problem Solving ratings are related to the
job profile

Accountability

Problem Solving

Coordination

Regulation

Process

Consulting

Analysis

Applied Research

Original Research

Developers evaluation system

 Biased towards problem solving

 Wide range of knowledge areas and skills

 Invariable factors:

 Thinking Environment

 Magnitude

 Job Impact

Developer’s job profile specifics

Developers evaluation system
Hay Guide Charts: area with high Know-How and
Problem Solving ratings

Source: http://www.beta.mmb.state.mn.us/doc/comp/hay/hay-manual.pdf

Developers evaluation system

Almost linear part of the chart

Total Points = f (Know How * Problem Solving) *

3300 4408 5775 8740 11352 17500 30096 46200
0

200

400

600

800

1000

1200

1400

1600

1800

2000

*Based on Hay Guide Charts numbers

Developers evaluation system

Hay
Method

Position
points

?
Employee

points

Developers evaluation system

Introducing additional factors

Hay
Method

Position Job
points

Performance
rating

Result Quality
rating

Employee
points

Solution

1. Decompose evaluation factors

Solution

Decompose evaluation factors

Know-
How

Job-Specific KnowledgeJob-Specific Knowledge

Managerial BreadthManagerial Breadth

Human Relations SkillsHuman Relations Skills

Programming

OS and Networks

Development Process

Project Domain

Parallel programmingParallel programming

Algorithms and data structuresAlgorithms and data structures

DesignDesign

DatabasesDatabases

Code style/qualityCode style/quality

Tools and technologiesTools and technologies

Know-
How

Job-Specific KnowledgeJob-Specific Knowledge

Managerial BreadthManagerial Breadth

Human Relations Skills Human Relations Skills

Planning and
Organizational Skills

Knowledge Sharing and
Consulting

Solution

Decompose evaluation factors

Know-
How

Job-Specific KnowledgeJob-Specific Knowledge

Managerial BreadthManagerial Breadth

Human Relations Skills Human Relations Skills

With Team and Colleagues

With Customers and
Partners

Solution

Decompose evaluation factors

Problem Solving

Creativity and Freedom of
Thinking

Zeal

Accountability
End Result

People

Solution

Decompose evaluation factors

Factor decomposition depth depends on factor significance

Solution

Decompose evaluation factors

1. Decompose evaluation factors
2. Define a scale and level descriptions for each

subfactor

Solution

Solution

Subfactor scale example

Know-How > Job-specific knowledge > Programming > Parallel Programming

Level Description

1 Knows about “multithreading” but can write only single-threaded code.

2
Understands concurrent resource access problems. Knows how deadlock appears

and how to avoid it in simplest case.

3

Familiar with the concept of volatile and atomic variables, can apply them
appropriately. Knows thread-safe structures design, thread starting/stopping and
synchronizing procedures. Can implement a thread pool, develop code accessing a
set of resources in multithreaded environment, etc.

4

Understands performance problems in multithreaded environment and the ways to
prevent them. Understands synchronization primitives, can deal with them
(read/write locks, reentrant locks, etc). Can deal with concurrent data structures.
Familiar with non-blocking and lock-free algorithms.

Solution

Subfactor scale example
Know-How > Managerial Breadth > Planning and organizational skills

Level Description

1 Fulfils without assistance only simple tasks if expound in detail. Needs mentoring on
permanent basis.

2

Copes with planning and fulfilling well-defined and prioritized tasks of average size with a
number of stages/subtasks. Identifies gaps and contradictions in task definition, requests
explanation. Needs consulting assistance from time to time. Effort estimates may be a few
times higher/lower than real one.

3
Works out details, plans and fulfils without any assistance complex tasks with high degree
of uncertainty. Proposes solutions in case of missing requirements, approaches to resolution
of technical issues. Gives accurate enough estimates of efforts (20%-50% error).

4

Skilled enough to coordinate working activities of group of developers on common task,
including requrements elaboration, breaking down onto stages/subtasks, resource planning,
task assignment, control over the progress, etc. If needed, initiates discussions and
research activities as part of the task execution. In addition to development coordinates
appropriate update of requirements, documentation and other artifacts related to product
development. Provides reliable estimates on time/resources needed for the entire scope of
work with 20%-50% precision.

Solution

1. Decompose evaluation factors
2. Define a scale and level descriptions for each

subfactor
3. Define weight coefficients of subfactors

Solution

[Know-How] = K1 * [Job-Specific Knowledge] +

 K2 * [Managerial Breadth] +

 K3 * [Human Relations Skills]

Define weight coefficients of subfactors

Ʃ Ki = 1K1
K2

K3

Solution

[Job-Specific Knowledge] =

 K11 * [Programming] + K12 * [OS and Networks] +

K13 * [Development Process] + K14 * [Project Domain] + …

Define weight coefficients of subfactors

Ʃ Kij = 1

K1
K2

K3

K11

K12

K13

K14

K1
K2

K3

K11

K12

K13

K14

Solution

Define weight coefficients of subfactors

[Problem Solving] = N1 * [Creativity] + N2 * [Zeal] + …

[Accountability] = M1 * [End Result] + M2 * [People] + …

Solution

Define weight coefficients of subfactors

Expert survey

Calculate
average/median

Solution

Define weight coefficients of subfactors

Solution

1. Decompose evaluation factors
2. Define a scale and level descriptions for each

subfactor
3. Define weight coefficients of subfactors
4. Define a formula for Total Points calculation

Solution

Define a formula for Total Points calculation

Know-How * Problem Solving

Base rating:

Know-How * Problem Solving*

(1 + K1 * Accountability)

Take accountability into account

Solution

Define a formula for Total Points calculation

Know-How * Problem Solving *

(1 + K1 * Accountability) *

(K2 * Performance + K3 * Quality)

With respect to effort:

Solution

Define a formula for Total Points calculation

Solution

Total Points = Know-How * Problem Solving *

 (1 + K1 * Accountability) *

 (K2 * Performance + K3 * Quality)

Define a formula for Total Points calculation

Solution

1. Decompose evaluation factors
2. Define a scale and level descriptions for each

subfactor
3. Define weight coefficients of subfactors
4. Define a formula for Total Points calculation
5. Fine-tune parameters

Solution

Fine-tune parameters

Using synthetic profiles, e.g.

 Student/Probationer

 «Working Horse»

 Experienced Senior Developer

 Lead Developer, Architect

 Expert-Consultant

Solution

Fine-tune parameters

Estimate factor ratings

Calculate Total Points

Compare results
(apply common sense)

OK?

Yes

Correct coefficients

No

Solution

1. Decompose evaluation factors
2. Define a scale and level descriptions for each

subfactor
3. Define weight coefficients of subfactors
4. Define a formula for Total Points calculation
5. Fine-tune parameters
6. Define grades

Solution

Define grades

Total points
range

Grade

50 - 70 D1: Probationer

65 - 90 D2: Junior Developer

85 - 110 D3: Developer

… …

200+ D7: Expert

Application Experience

Correlation between calculated Total Points and «gut feeling»
based rating depends on experience and objectivity of
manager/rater

4 5 6 7 8 9 10 11
0

40

80

120

160

200

Team1

Team2

Team3

Application Experience

Calculated Total Points vs subjective gauge – based on real data

Calculated
rating

Subjective
gauge (0-10)

Application Experience

Each particular manager rates on his specific level of tolerance

Application Experience

0
20
40
60
80

100
120
140
160

Manager 3

Manager 4

0
20
40
60
80

100
120
140
160
180

Manager 1

Manager 2

Comparison of gauges made by 2 managers independently – based on real data

Application Experience

 Calculated rating has high enough correlation with

subjective gauge

 Evaluation results become much more transparent

 Specific ratings may be confirmed by artifacts

 It is hard for some managers to estimate certain

knowledge factors without assistance

Conclusions

 You also can do this

 with respect to your company’s needs

 applicable not only to developers

Conclusions

 You do the evaluation anyway

 but you can do it better

References

1. Hay method official white paper:

http://www.haygroup.com/downloads/au/Guide_Chart-Profile_Method_of_Job_Evaluation_Brochure_web.pdf

2. Hay method application manual by State of Minnesota, USA: http://www.beta.mmb.state.mn.us/doc/comp/hay/hay-manual.pdf

3. Hay method application by Alberta province, Canada: http://www.chr.alberta.ca/learning/competencies/apsmodel/aps-competency-model.pdf

4. Mercer’s IPE: http://www.ovc.lt/uploads/File/Johan_Ericsson_presentation.pdf

5. Discussion on developers efficiency evaluation: http://habrahabr.ru/post/101906/

6. Programmer competency matrix: http://sijinjoseph.com/programmer-competency-matrix/

7. 360 degree feedback: http://en.wikipedia.org/wiki/360-degree_feedback

http://www.haygroup.com/downloads/au/Guide_Chart-Profile_Method_of_Job_Evaluation_Brochure_web.pdf
http://www.beta.mmb.state.mn.us/doc/comp/hay/hay-manual.pdf
http://www.chr.alberta.ca/learning/competencies/apsmodel/aps-competency-model.pdf
http://www.ovc.lt/uploads/File/Johan_Ericsson_presentation.pdf
http://habrahabr.ru/post/101906/
http://sijinjoseph.com/programmer-competency-matrix/
http://en.wikipedia.org/wiki/360-degree_feedback

Thanks!

Questions?

Valentin Anoprenko

anoprenko@devexperts.com

