
©2003 Bedsore Research Labs. All rights reserved.

IT 4.0 – The Challenge and The
Opportunity

Value and Data Driven, Query Centric, Functional, Self
Service ...

Dave Thomas
www.davethomas.net

Bedarra Research Labs YOW! / GOTO Conferences DepthFirst Carleton University
Canada Queensland University of Technology Australia

Lodestone Foundation

http://www.davethomas.net/

IT 4.0 Outline

Challenges
● IT 1.0 - 3.0 Rigidity and Lost Opportunity

● Business 4.0

● Technology 4.0

Opportunities
● Simplfied Flow - Value Driven

● Accelerated Delivery

● Data Driven - Query Oriented

● New Modularity - Microservices and Actors

● Self Service - Ultimate Pairs

©2006 Bedarra Research Labs. All rights reserved.

Jurassic Middleware – Life in
The Tar Bits

1.0 Mainframe with COBOL
 and 4GLs, Waterfall

2. PC and Unix – Desktop GUI,
 Client–Server, C/C++, Relational
 and SQL Stored Procedures

3. OO, 3 Tier, Java/C#, Middleware,
 App Server, Agile, Web 1.0

Jurassic Software? – Life in The Tar Bits

CIO

©2006 Bedarra Research Labs. All rights reserved.

Escalating Costs of Ownership

Business 4.0

© 2012 Bedarra Research Labs

▪ Innovation delivered through Agility (beyond Rigidity)

▪ Buiness Model Value Driven

▪ Data Driven Real-time Business

▪ Continous Adapation and Delivery

Better, Faster, Cheaper – A New Road?

We must improve our way software delivery to meet the challenge.

• Focus on Value and Flow– Target resources and innovations to where they will
make a difference.

• Refactor our organization - to enable more concurrency and reduce cycle time
without reducing quality. Leverage what works and not be constrained by current
best practices. If it is slow it has to go!

• Explore and Innovate – we need to envision alternatives and evaluate them
quickly before betting too much on any approach. We need to fail vast to
maximize ROI and time.

• Advance and Automate Development – use alternative techniques to
communicate, design, estimate, build, test and deploy.

1. E

© 2012 Bedarra Research Labs. All rights reserved.

Technology 4.0

Hardware - Warp Speed in Parallel Universes

© 2012 Bedarra Research Labs

Let the Hardware Do The Work!

$25,000 buys a computer 1 TB RAM with 40 TB disk and 32 cores!

$200 buys 1000 4 GB cpus on Amazon for 1 hour!

•Automated Build and Test is mandatory

•All interesting data is in memory! DB is an oxymoron

•Inexpensive Data Conversion/Translation

•Data Compression and Encryption is “free” on multi-core

•Speed and Memory enable Simpler Algorithms

•Enable End User Computing at Scale

If only the Software will let us have mechanical
sympathy?

©2009 Bedarra Research Labs. All rights reserved.

Every Thing Occasionally Disconnected

© 2012 Bedarra Research Labs

So Many Languages to Choose From?

How many Classes & Packages in Java?

Total No of Classes

Java1.02 –> 250 Java1.1 –> 500 Java(2-4) –> 2300 Java5 –> 3500

Java6 –> 3793 Java7 –> 4024 Java8–> ????

Total No of Packages

Java6 –> 203 Java7 –> 209 Java8 -> ???

How many frameworks? ….

How many serialization formats? ...

Of Course you know 4.0 Alien Languages !

© 2012 Bedarra Research Labs

Planets Immersed in the Clouds

© 2012 Bedarra Research Labs

The many moons of NoSQL

© 2012 Bedarra Research Labs

Lost in the Big Data Galaxy

© 2012 Bedarra Research Labs

Web Next? Open Force versus Walled App Empires

© 2012 Bedarra Research Labs

API “Field of Dreams”

 Give them APIs and pray the Applications will
come!?

Complexity of Technical Alternatives!

Simplicity! - The Road Not Taken?

© 2012 Bedarra Research Labs

ComplexitySimplicity

X

Lean – Ouch! Thinking and Leadership?

©2010 Bedarra Research Labs. All rights reserved.

Value Driven Flow

Executive

Technical Director

Team Leader

Individual
Contributors…

Individual
Contributor…

Management Ladder

Lean Software Organization
Technical Ladders, Playing Coaches and Communities

Distinguished
Engineer

Principal
Engineer

Outstanding
Contributor

Technical Ladder

©2011 Bedarra Research Labs. All rights reserved.

Manag
ement Archit

ects
Leads

Custo
mer

Produc
t

Mgr.
Tools

Proces
s

Infrastr
ucture
Platfor

ms
Coach

Relea
se

Deplo
yment
Suppo

rt

Test
Driven
Devel
opmen

t

Produ
ct

Learning
Communities of

Practice

Align Compensation with Work Products and
Goals

Projects are from Mars - Products are from Venus

© 2012 Bedarra Research Labs. All rights reserved.

Projects are about apps and resource; Products are about Features

IT sees feature teams == project teams; Products require component
and feature teams;

Projects App is all we need, reuse is optional and unlikely; Product
Architecture and Reuse is Essential

Project focus is my App ; Products all about Interfaces, Dependencies

Project apps can evolve : Products need Design to Last

Projects resources pooled ;Products own their $, backlogs, teams …

Projects delivered incrementally ; Products need a schedule and
deliverables for major functionality

Eliminate Projects! – Manage to Your Capacity
Program Feature Team

 P1 F1 Blue

 F2 Blue

 F3 Red

 F4 Red

 F5 Red

 F6 Red

 P2 F7 Yellow

 F8 Green

 F9 Green

 F10 Purple

 F11 Purple

 P3 F12 White

 F13 White

 F14 White

 F15 White

 Component F16 Orange

 F17 Orange

 F18 Orange

Company Backlog

Program Backlogs

Team Backlogs

Program

Feature

Epic

Story

Task

 MRI Mechanical Control

Table Movement

 Horizontal Movement

 Medical Imaging

Position w/ Joy Sticks

Rapid Application Development Process

© 2012 Bedarra Research Labs

The More Things Change? … IT Stays the Same!

© 2012 Bedarra Research Labs

Create – Read –Update – Delete (CRUD)

Business Analytics, Mobile, Cloud Computing, Multi-player
Games …

 IT is still! = CRUD + Workflow + Data

© 2012 Bedarra Research Labs

Input and Outputs - Forms, Reports and Data Transformations

Workflow – Form Flow and Transformation (Boxes and Arrows)

Event/Actions – Event-State Tables/Sourcing

Rules/Actions – Decision Tables (Rule Engines)

Complex Calculations – Constraints/Dataflow (Spreadsheets)

Data and Relationships – Data Models (ER= OMT)

Objects are in the technology not in the domain!

Data Intensive Computing

Applied Functional Programming (aka Super CRUD)

SQL + Functions + Streams – e.g. Greenplum …

NoSQL Databases – Dictionaries on Steroids (Big Table,
CouchDB…)

Map Reduce Data Parallel

Hybrid JVM, CLR/LINQ functional languages F#, Scala,
Clojure

Vector Functional Programming

Reactive Programming Rx...

All roads lead to some form of Functional CRUD!

Faster, Better, Cheaper

How can we reduce the software cycle time?

©2009 Bedarra Research Labs. All rights reserved.

Needs Solution

Development

Answer - Ship Less Code! Make it Easier to Change!

© 2012 Bedarra Research Labs. All rights reserved.

KLOCS (1000 lines of code) Kill! => Be More Expressive

Dependencies Strangle => Micro Service Aarchitecture

Avoid Frameworks inject dependencies => Less Objects, more
FP?

Data Driven Always More Flexible Than Code Driven =>
Descriptions, Tables and Queries

Automate Everything!

Enable DIY Programming => Let the business think and compute

Automate Everything!

● Simpfied Requirements Capture - Delta analysis

● Automated Testing

● Automated Build

● Automated Deploy

● Automated Test Construction?
○ - Randomized Testing

● Automated Program Construction ?
○ Programming By Example
○ Machine Learning

Use Less Objects and Less Code !

Object Refactoring harder than Changing Data and Functions

Many Apps have few if any domain objects!

© 2012 Bedarra Research Labs. All rights reserved.

 Table Driven Programming

Rules Decision Table
Calculation Spreadsheet
Data Validation Domain and Range Table
Mapping Lookup Table
Flow Data, Work Flow, Message
Events, Matches State Table
Process, Reports Input-Output Table
Acceptance Criteria BDD
Domain Models Entity-Attribute Dictionary

Table Oriented Programming

A picture is 1000 words, a table 200 and a diagram 50

Advantages

•Easily understood by Business, BA, Dev and QA

•Easy to create, refactor and extend using Excel

•Modularity through structured tables

•Consistency /Completeness Checking

•Easy to version and Diff

•Efficient Automated Data Driven implementation

•Data Driven means changes can be “hot deployed” to a running
application

Applications
 Insurance, Banking, Taxation, Healthcare, ATC, Real-time…

TOP Programmers Wanted!
©2009 Bedarra Research Labs. All rights reserved.

Simplify - Reduce Integration Time and $$$

•ATOM/RSS feeds on our legacy/partner systems – journal
 files, events …

•Use ODBC as a simple interface to complex server systems

•REST and JSONify your services, Provide a scriptable service,
Use Self Described Data e.g. LinkedData

•Use a simple MashUp tool to deliver a integrated application
view

©2004 Bedarra Research Labs. All rights reserved.

Script to Save Time and $$$

•More and more applications are disposable at least in
▪make it work and get it out there,
▪scale it later if you need to

•Script Softly for productivity

▪Ruby, Python, PHP, Groovy, JavaScript, Clojure…

•Leverage cloud services (map reduce, cloud DB..CRM)

•Leverage core internal and external services via REST/ODBC

©2004 Bedarra Research Labs. All rights reserved.

Service-Oriented Computing Infrastructure:
Cloud -The Software Enabler

The Emergence of A Simpler Application Infrastructure
▪Examples - On Demand, Software As A Service such as Amazon S3,
EC2, SimpleDB, Google App Engine, Sales Force …
▪Simpler limited “thin” service API (< 50) closer to underlying
platform which provides support for scalable, distributed, secure
computing
▪Independence on mainstream vendor Underware and Middleware
▪ Google Linux, VMware Virtual Machine, MS Azure Hypervisor V

Application Development Benefits
▪ Small Service API (thin to none class library & frameworks)
▪ Limited Choice Reduces Decisions and Support
▪ Leverages Other Apps through Services
▪Total App Responsibility from envisioning to production
i.e. App Team caries the beeper

We all know that testing costs a lot and takes time, mocking
is hard especially when working in a changing complex
environment. Lets not bother!

What it takes

1. Modular micro service architecture
▪ instant deployment and tear down
▪ loose data coupling
▪ well defined SLA

2. Simple Functionality in each Deployment

3. Stringent SLA Monitoring for Deviant

4. Let it fail architecture (Erlang versus execptions)

5. Replication

Applications – Telecom, Finance, eCommerce ...

© 2012 Bedarra Research Labs. All rights reserved.

Code and Deploy – Testing Considered Harmful!

©2003 Bedarra Research Labs. All rights reserved.

What Is a Micro Service?

A service provide an interface to a specific subset of
functionality/data in an enterprise.

▪Versioned Services can be concurrently deployed to enable
new and older apps.
▪Services are not frameworks; they are components with
value only interfaces.
▪Services are realized as components with consumable APIs.
▪One or more services can often be supported by a service
team.

©2003 Bedarra Research Labs. All rights reserved.

Technical Value Proposition

Services increase modularity, reduce coupling, increase
technology and delivery choices.

▪Services reduce large monolithic applications to a set of single
function technology independent APIs which can be composed into
business applications
▪Services are loosely coupled hence can be incrementally be
developed and deployed
▪Services are easier to distribute, provision and monitor
▪Services expose the tangible business architecture versus the
internal technical applications architecture
▪Services enable parallel Business App development and service
definition and development (feature and component teams)
▪Services are realized as components with consumable APIs.
▪Services easier to deploy and test.
▪One or more services and be owned and implemented by a team.

Enabling Loose Coupling

• All APIs are value based and where possible stateless

• Isolation of services in separate processes/machines

• Simple Pipes and Filters when possible

• RSS/ATOM feeds from events/updates/logs

• Occasionally Disconnected – replication and sync; event
source..

• Simple efficient implementations using co-routines..

• Orchestration/Composition using Scripting Process
• Messaging.. Node.js, Erlang, Actors

• FP thinking encourages value orientation and composition

©2003 Bedarra Research Labs. All rights reserved.

©2003 Bedarra Research Labs. All rights reserved.

Service Architecture and Design

©2003 Bedarra Research Labs. All rights reserved.

Micro Serivce - The Business Value Proposition

Business Apps can be more easily configured from Services
▪Large Monolithic Systems are decomposed into simpler
services which enable
▪Services and their SLA published in a web catalog
▪One or more services can be composed into an App with a
tailored interface for a given market
▪App delivery can be supported by simpler less technical end
user tooling such as Wikis, Visual Connections
▪Apps can combine services from insurance and banking etc.
▪Bus Apps = Services (Features) + Services (Components)

DIY - Bus App Development

©2003 Bedarra Research Labs. All rights reserved.

Do It Ourselves Programming –The Empowerment

Business Driven Development
▪ Enterprise Mashups – The Real SOA?
▪ Applications Assembled from Feeds and Services

Lively
Fabrik

IBM
QEDWiki

Yahoo Pipes

Dabble DB

Google Mashup
Editor

Loose Coupling – Let’s Hope It Sticks This Time

Data Flow – Data Flow Computing … Maxor FPGA DF

Structured Analysis and Design (SADT)

Unix Pipes and Filters

Flow Base Programming – J. Paul Morrison

Hewitt Actors

Spreadsheets

Visual Programming - Labview

Actors - Erlang

Query/Collection Oriented Programming

©2003 Bedarra Research Labs. All rights reserved.

© 2012 Bedarra Research Labs

▪ Happy end users with DIY computing

▪ Best Practice = Lean + Real Models to Code By Business

202x?

We can learn from our Children!

© 2012 Bedarra Research Labs

© 2012 Bedarra Research Labs

Спасибо!

Summary

● Focus on continuous delivery of value

● Maximize Flow

● Leadership and Skills Matter

● Favor targeted high value change over systemic change

● Build Products not Projects

● Respect the Individual and Organizational APIs

● Just Enough Design and Architecture

● Features and Components both essential

● Ensure every feature has an associated acceptance
criteria

● Acceptance Tests >> API Test >> Unit Test

● Automate everything

● Use the right tool/practice for the right job© 2012 Bedarra Research Labs. All rights reserved.

