IT 4.0 —The Challenge and The
Opportunity

Value and Data Driven, Query Centric, Functional, Self
Service ...

Dave Thomas

www.davethomas.net

Bedarra Research Labs YOW! / GOTO Conferences DepthFirst Carleton University
Canada Queensland University of Technology Australia

Lodestone Foundation

©2003 Bedsore Research Labs. All rights reserved.

http://www.davethomas.net/

IT 4.0 Outline

Challenges

® |T1.0-3.0Rigidity and Lost Opportunity

® Business 4.0

Technology 4.0

Opportunities

Simplfied Flow - Value Driven

Accelerated Delivery

Data Driven - Query Oriented

New Modularity - Microservices and Actors

Self Service - Ultimate Pairs

1.0 Mainframe W
and 4G{__s_, W

Cllent—Serv

'|

and SQL Sto

= I
E

3. OOf ~>3 Tler mJa k

;}

e Web10

-~ Escalating Costs of Ownership

1111111111111111

hecrurting Retaining Talent

License Gomplexity Gosts
Pl Instabilty icenses Expense Gomplexity

ORE Accidental Complexity

MORE SW HW Platforms
Increased Gode Bloat

ment

— T

—
1
Gertification vs Gompetenc

aintenance vs Develop

Platform framannrk Tool Ghurn

Business 4.0

= Innovation delivered through Agility (beyond Rigidity)
= Buiness Model Value Driven
= Data Driven Real-time Business

= Continous Adapation and Delivery

Energy

Healthcare

— Faster Cheaper BetterResources
= _Instrumentation
= Global Collahoration

Markets

=Transportation Financial

== Environment

Agricutir

Better, Faster, Cheaper — A New Road?

We must improve our way software delivery to meet the challenge.

Focus on Value and Flow— Target resources and innovations to where they will
make a difference.

Refactor our organization - to enable more concurrency and reduce cycle time
without reducing quality. Leverage what works and not be constrained by current
best practices. If it is slow it has to go!

Explore and Innovate — we need to envision alternatives and evaluate them
quickly before betting too much on any approach. We need to fail vast to
maximize ROI and time.

Advance and Automate Development — use alternative techniques to
communicate, design, estimate, build, test and deploy.

© 2012 Bedarra Research Labs. All rights reserved.

Technology 4.0

. —
H S 7
ot _I_-F r,.r
T, . ‘ N e
i = -:-._ I" 4 ..‘

Ya aTi."'i'

b

‘F‘;i

1]|

:ﬁiﬁhhl- W

’ ___.-" e
s
AN

. .5._:

Co

Hardware - Warp Speed in Parallel Universes

MUItTi core
OO0+ Cores

—

mp

3D Chips

rduino

VLIW Raspberry PI<
FPGA Accelerators100x bandwidth 2015

Quantum Computin

tation:

J Multilevel Cache
Nano computing

PUS Zetahutes

BrainsPico Proj

ector

Let the Hardware Do The Work!

$25,000 buys a computer 1 TB RAM with 40 TB disk and 32 cores!
S$200 buys 1000 4 GB cpus on Amazon for 1 hour!

* Automated Build and Test is mandatory

*All interesting data is in memory! DB is an oxymoron
*|nexpensive Data Conversion/Translation

*Data Compression and Encryption is “free” on multi-core
*Speed and Memory enable Simpler Algorithms

*Enable End User Computing at Scale

If only the Software will let us have mechanical
sympathy?

©2009 Bedarra Research Labs. All rights reserved.

Every Thing Occasionally Disconnected

0y \loice

3 video

2 ¢ 8 Walls
g Speech

Mobile

Phone Gap
Accelerometer

Sensors

So Many Languages to Choose From?

;SIT]; ;SIT]; Delta in Position FProgramming Language :;tuzr':; D:tE::H Status
1 1 C 17.246% | -258% | A
v > Java 16.107% | -1.00% | A
3 3 Objective-C 8.002% | -049% | A
A 4 C+ B.664% | -0.60% | A
5 6 T PHP 6.004% | +0.43% | A
6 5 [1 Ci# 5718% | -0.81% | A
Fii Fi MWisual) Basic 4 8199% -0 30%0 A
8 8 Python 3107% | -079% | A
) 23 TTTEETERTT | Transact-SQL 2621% | +2.13% | A
10 11 T JavaScript 2038% | +0.78% | A
11 18 Tt 1Y Visual Basic .NET 1933% | +1.33% | A
12 9 118 Perl 1.607% | -052% | A
13 10 NN Ruby 1.246% | -056% | A
14 14 Pascal 0753% | -009% | A
15 17 T PL/SQL 0730% | +0.10% | A
16 13 118 Lisp 0725% | -022% | A
17 12 INNNN] Delphi/Object Pascal 0701% | -040% | A
18 53 TTTTETTEERT | Groow 0658% | +053% | B
19 19 MATLAB 0614% | +002% | B
20 26 T ee COBOL 0599% | +0.15% | B

How many Classes & Packages in Java?

Total No of Classes

Javal.02 —> 250 Javal.l —> 500 Java(2-4) —> 2300 Java5 —> 3500
Java6 —> 3793 Java7 —> 4024 Java8—> ????

Total No of Packages

Java6 —> 203 Java7 —> 209 Java8 -> ???

How many frameworks?

How many serialization formats? ...

RACLET EVENT

PROGRAMMING Jave

ERLANG lQnGUQG(S

hASKel

ONCURRENT COLECions DARTpeClARATIVE
CLOJURESCRIPT (OFFEESCRIPT JAVASCRIPT
SPEC PROCESSING (LOJURE AGENTS
SCheme IMmUTABLE VECTOR ciiay

(UAGREMUNFUNCTIONAL RAILS
ngUVELY pe, LNQ (Gl

Planets Immersed in the Clouds

gl
= =
€ §SAAS Force Herol:u'.":al' N
& : 0
EE oAppScaleSecurity 8 .%T'“St ISON
V8 w
6'3'3 & App Engineé' On Demand
9H2 g2 AppDynamicsi Beanmstock =
W% 4= Protocol Buffer 1 achine Leaming
Bal » Walled GardenEucalyptus
b 2 GluRegion Sharding

ATOM

vCloud Public
Big Table API
Azure

CoSOL
fventual Gonsistency
piok Document Store

Hbase GAPTh

Eventual
Consistenc

S
Tolerance to network
Partiion _ o duced in 2000 by Eric Bree
- More formal confirnation in 200
‘Seth Gilbert And Nancy Lynch

The many moons of NoSQL

GoughlB Cassandrapic:

) ligastoreg.ng

= €™y Iriple Store

€ DynamoDB Lolumn Store
== \ector Clocks BSON

Key Value Store Gemstone_
Memcached Redis= S

orem

Neo

Lost in the Big Data Galaxy

SPARQL
¢ Data Scientist

B 1gD ata.

L RDFE ks §=

Visualization Column Store S =

DES Triple _S'[Ot'eh’lap*R -~ =

Bio Gl,__aphStatlstlcal Samphr;g E A
o Unstructured Hive s
.«C'IC'J,QJL«; /.ettabtyes §

Hadoop Streaming
Raw Data

Web Next? Open Force versus Walled App Empires

Atom TUIO DoJ
BSON REST RaphaclWeb DOM

Modules Reactive LINQ Nginx SCSS OWL

Javadcript Web Workers Infoviz -
Backbone js _Browser Extension pg¢q B‘Eibd]};tgm

WG]) N eXtWeh Sockets p Moustache
Lamp Apache508 Compliance S IrocessIng,Js

Ecmascript Next Fireb
RDE e AL OPI Ing

WebGL Node js Ember.js Sinatra Bails, o xro10viz
HTMIL5 CSSJNew Relic HTTP RSSOVG W
Rudio ~ Jquery JSON SEO

Yawsd

API| “Field of Dreams”

Give them APIs and pray the Applications will

ProgrammableWeb APl Growth 2005 - 2013

10000
S000
2000

7000 7

OO0
e Complexity of Technical Alternatives!
4000 -
3030

2000

1030

Simplicity! - The Road Not Taken?

If you can't explain it simply, you
don't understand it well enough.

Albert Einstein

Lean — Ouch! Thinking and Leadership?

Value Driven Flow

= e ——
'_\"'_"'-""-"'ﬂ.'___"‘_ B '- E.n-._'- = [

o _..-.—n..

———

.

|'Il .I'I f .-"! :
Value The: }{ /
Principles of .
- Product L
o | a5y Development
Y Fi oW

Second Generation
Lean Product Development .

Y

DONALD G. REINERTSEM

©2010 Bedarra Research Labs. All rights reserved.

Lean Software Organization
Technical Ladders, Playing Coaches and Communities

Management Ladder Learning
Communities of

Executive Technical Ladder

Custo
it I mer
Technical Director D'Stmnghed Prod
Engineer [|
Reltea Le-'a-BQS
MSr Proces
o Principal S
Team Leader Individual Enginger Infrastr
Contributor... est ucture
<4 DrivenP|atfor
Individual Devel ms

Outstanding
Contributor

opmen
t

Contributors...

Align Compensation with Work Products and
Goals

©2011 Bedarra Research Labs. All rights reserved.

Projects are from Mars - Products are from Venus

Projects are about apps and resource; Products are about Features

IT sees feature teams == project teams; Products require component
and feature teams;

Projects App is all we need, reuse is optional and unlikely; Product
Architecture and Reuse is Essential

Project focus is my App ; Products all about Interfaces, Dependencies
Project apps can evolve : Products need Design to Last
Projects resources pooled ;Products own their S, backlogs, teams ...

Projects delivered incrementally ; Products need a schedule and
deliverables for major functionality

© 2012 Bedarra Research Labs. All rights reserved.

Eliminate Projects! — Manage to Your Capacity

Program

Feature

Team

P1

F1

F2 mp

Blue
Blue

F3

Red

F4 mp

Red

F5

Red

Company Backlog]
Program Backlogs Il 1H
Team Backlogs 1 NI

F6

Red

Program

Medical Imaging

F7*

Yellow

T

Green
Green

F10

Purple
Purple

P3

=>

White
White
White
White

Component

Orange
Orange

Orange

}’/Featu re

MRI Mechanical Control

Table Movement

Horizontal Movement

Position w/ Joy Sticks

Rapid Application Development Process

The More Things Change? ... IT Stays the Same!

Create — Read —Update — Delete (CRUD)

Business Analytics, Mobile, Cloud Computing, Multi-player
Games ...

i‘ﬁ '|'i‘ii'i1

Fe

© 2012 Bedarra Research Labs

IT is stilll = CRUD + Workflow + Data

Input and Outputs - Forms, Reports and Data Transformations
Workflow — Form Flow and Transformation (Boxes and Arrows)
Event/Actions — Event-State Tables/Sourcing

Rules/Actions — Decision Tables (Rule Engines)

Complex Calculations — Constraints/Dataflow (Spreadsheets)

Data and Relationships — Data Models (ER= OMT)

Objects are in the technology not in the domain!

© 2012 Bedarra Research Labs

Data Intensive Computing

All roads lead to some form of Functional CRUD!

Applied Functional Programming (aka Super CRUD)
SQL + Functions + Streams — e.g. Greenplum ...

NoSQL Databases — Dictionaries on Steroids (Big Table,
CouchDB...)

Map Reduce Data Parallel

Hybrid JVM, CLR/LINQ functional languages F#, Scala,
Clojure

Vector Functional Programming

Reactive Programming Rx...

Faster, Better, Cheaper

How can we reduce the software cycle time?

©2009 Bedarra Research Labs. All rights reserved.

Answer - Ship Less Code! Make it Easier to Change!

KLOCS (1000 lines of code) Kill! => Be More Expressive
Dependencies Strangle => Micro Service Aarchitecture

Avoid Frameworks inject dependencies => Less Objects, more
FP?

Data Driven Always More Flexible Than Code Driven =>
Descriptions, Tables and Queries

Automate Everything!

Enable DIY Programming => Let the business think and compute

© 2012 Bedarra Research Labs. All rights reserved.

Automate Everything!

® Simpfied Requirements Capture - Delta analysis
® Automated Testing

® Automated Build

® Automated Deploy

® Automated Test Construction?
O - Randomized Testing

® Automated Program Construction ?
O Programming By Example
O Machine Learning

Use Less Objects and Less Code !

Object Refactoring harder than Changing Data and Functions

Many Apps have few if any domain objects!
Table Driven Programming

Rules Decision Table

Calculation Spreadsheet

Data Validation Domain and Range Table
Mapping Lookup Table

Flow Data, Work Flow, Message
Events, Matches State Table

Process, Reports Input-Output Table
Acceptance Criteria BDD

Domain Models Entity-Attribute Dictionary

© 2012 Bedarra Research Labs. All rights reserved.

Table Oriented Programming

A picture is 1000 words, a table 200 and a diagram 50
Advantages

*Easily understood by Business, BA, Dev and QA

*Easy to create, refactor and extend using Excel
*Modularity through structured tables

*Consistency /Completeness Checking

*Easy to version and Diff

eEfficient Automated Data Driven implementation

*Data Driven means changes can be “hot deployed” to a running
application

Applications

Insurance, Banking, Taxation, Healthcare, ATC, Real-time...

TOP Programmers Wanted!

©2009 Bedarra Research Labs. All rights reserved.

* ATOM/RSS feeds on our legacy/partner systems — journal
files, events ...

*Use ODBC as a simple interface to complex server systems

*REST and JSONify your services, Provide a scriptable service,
Use Self Described Data e.g. LinkedData

*Use a simple MashUp tool to deliver a integrated application
view

©2004 Bedarra Research Labs. All rights reserved.

Script to Save Time and $SS

*More and more applications are disposable at least in
"make it work and get it out there,
=scale it later if you need to

*Script Softly for productivity
=Ruby, Python, PHP, Groovy, JavaScript, Clojure...
*| everage cloud services (map reduce, cloud DB..CRM)

*| everage core internal and external services via REST/ODBC

©2004 Bedarra Research Labs. All rights reserved.

Service-Oriented Computing Infrastructure:
Cloud -The Software Enabler

The Emergence of A Simpler Application Infrastructure

"Examples - On Demand, Software As A Service such as Amazon S3,
EC2, SimpleDB, Google App Engine, Sales Force ...

=Simpler limited “thin” service APl (< 50) closer to underlying
platform which provides support for scalable, distributed, secure
computing

"Independence on mainstream vendor Underware and Middleware

= Google Linux, VMware Virtual Machine, MS Azure Hypervisor V

Application Development Benefits
= Small Service API (thin to none class library & frameworks)
= Limited Choice Reduces Decisions and Support
= Leverages Other Apps through Services

=Total App Responsibility from envisioning to production
i.e. App Team caries the beeper

Code and Deploy — Testing Considered Harmful!

We all know that testing costs a lot and takes time, mocking
is hard especially when working in a changing complex
environment. Lets not bother!

What it takes

1. Modular micro service architecture
’ instant deployment and tear down

. loose data coupling
. well defined SLA

2. Simple Functionality in each Deployment

3. Stringent SLA Monitoring for Deviant

4. Let it fail architecture (Erlang versus execptions)
5

Replication

Applications — Telecom, Finance, eCommerce ...

© 2012 Bedarra Research Labs. All rights reserved.

What Is a Micro Service?

A service provide an interface to a specific subset of
functionality/data in an enterprise.

"\Versioned Services can be concurrently deployed to enable
new and older apps.

=Services are not frameworks; they are components with
value only interfaces.

=Services are realized as components with consumable APIs.

*One or more services can often be supported by a service
team.

©2003 Bedarra Research Labs. All rights reserved.

Technical Value Proposition

Services increase modularity, reduce coupling, increase
technology and delivery choices.

=Services reduce large monolithic applications to a set of single
function technology independent APIs which can be composed into
business applications

=Services are loosely coupled hence can be incrementally be
developed and deployed

*Services are easier to distribute, provision and monitor

=Services expose the tangible business architecture versus the
internal technical applications architecture

*Services enable parallel Business App development and service
definition and development (feature and component teams)

=Services are realized as components with consumable APIs.
=Services easier to deploy and test.
"One or more services and be owned and implemented by a team.

©2003 Bedarra Research Labs. All rights reserved.

Enabling Loose Coupling

* All APIs are value based and where possible stateless
* |solation of services in separate processes/machines
* Simple Pipes and Filters when possible

* RSS/ATOM feeds from events/updates/logs

® (Qccasionally Disconnected — replication and sync; event
source..

* Simple efficient implementations using co-routines..

* Orchestration/Composition using Scripting Process
* Messaging.. Node.js, Erlang, Actors

* FP thinking encourages value orientation and composition

©2003 Bedarra Research Labs. All rights reserved.

Service Architecture and Design

Occasionally-Disconnected

Micro-Services
Interfaces Self-Described

PlpeSCode-De loy-Monitor- =
Table-driven Let—It-fazl PBE Eg

Messaging Eventual- Conszstency"c:s
© SBE Replication ODBC &

i Integratzon—patterns

S Strong-generic Corourines
~ Flow-Oriented API
SOLID-principles

Provisioning

Fault-Tolerance REA‘ggertj%e(I)gf\!fS Nodejs

o g; Q — Separation-of-concerns

R = o Functioal-Web r::hSLA

< LS o Actors ~

S 0.0

QR IS gum Pico-container t: E =

Flﬁ ch%' % = 3 QulckCheck BI‘,....,_ a S .S

s S =&8 Isolation & E

QNS R

s A
-

~ Protocols

Micro Serivce - The Business Value Proposition

Business Apps can be more easily configured from Services

*Large Monolithic Systems are decomposed into simpler
services which enable

=Services and their SLA published in a web catalog

*One or more services can be composed into an App with a
tailored interface for a given market

*App delivery can be supported by simpler less technical end
user tooling such as Wikis, Visual Connections

*"Apps can combine services from insurance and banking etc.
*Bus Apps = Services (Features) + Services (Components)

©2003 Bedarra Research Labs. All rights reserved.

DIY - Bus App Development

Do It Ourselves Programming —The Empowerment

Business Driven Development

SALES TRACKING #mume montutn Sy Tussanon oy 1l

= Enterprise Mashups — The Real SOA?
= Applications Assembled from Feeds and Services

Enterprise Mashups:

Dabble DB

40 1 Yahoo Pipes
QEDWiki
Google Mashup
Editor i
Lively
Fabrik

©2003 Bedarra Research Labs. All rights reserved.

Loose Coupling — Let’s Hope It Sticks This Time

Data Flow — Data Flow Computing ... Maxor FPGA DF
Structured Analysis and Design (SADT)

Unix Pipes and Filters

Flow Base Programming — J. Paul Morrison

Hewitt Actors

Spreadsheets

Visual Programming - Labview

Actors - Erlang

Query/Collection Oriented Programming

©2003 Bedarra Research Labs. All rights reserved.

202x?

= Happy end users with DIY computing

= Best Practice = Lean + Real Models to Code By Business

© 2012 Bedarra Research Labs

We can learn from our Children!

Experimentalmetadata visualization : L 2

amd wmn i 0 S
- = To start,just evaluate the code inside the "Helpers" window to the right by right-clicking at the source code and
choosing "Text functions.-> "accept changes (s).
Afterthis press "Explore..! to visualize the metadata of the SAPData / OData service at the ServiceURL.
ke ServiceURL: http://services.odata.org/(S(asp33mq1beg1ggxbegikeccu))/OData/OData.sve Explore...
b P
= b] by

Visualization

Metadata

return this._rootNode;

var sublode
typ

return node;

Cnacunb6o!

“The future has already
arrived. It's just not evenly
dlStrlbUtEd yet."

mmmmmmmm

Summary

Focus on continuous delivery of value

Maximize Flow

Leadership and Skills Matter

Favor targeted high value change over systemic change
Build Products not Projects

Respect the Individual and Organizational APIs

Just Enough Design and Architecture

Features and Components both essential

Ensure every feature has an associated acceptance
criteria

Acceptance Tests >> API Test >> Unit Test

Automate everything

o {Jse'the right'tool/practice for the right job

